Dec 19, 2013

The Working Of An RGB Laser

By Cornelia White


An RGB laser is that laser that emits three primary colors of light. These are red light, green light and blue light, hence the acronym RGB. These can be produced in a single beam for all the three colors or separate beams for each of the color. Through the process of optical amplification of stimulated emissions of electromagnetic radiations, it is possible to obtain many more colors from these primary colors.

RGB laser sources have proven to perform better than other arc lamps beam sources. While the later are normally cheaper sources of beams, they come with limited lifetime, poor image quality and impossibility of high wall-plug efficiency. This is particularly as a result of poor spatial coherence and availability of less color space, a result of which has seen a rapid rise in their demand.

Beams from these sources are known to be coherent in both wavelengths, both in time and space allowing for inferences. If the change in phase properties is able to take place at the same time over a long distance and at the same period of time, then such waves will produce a very clear image. It is possible to cancel such waves with a similar with opposite phase.

These lasers are known to produce beams of the three primary colors with very narrow optical bandwidth making them close to the monochromatic light beams. They are thus capable of producing very clear images on mixing, the reason why they are getting more application like in cathode tube displays, color printers and lamp-based beamers.

RGB sources however suffer from a major setback given that the power level that is emitted is usually of low level. Most cinema projectors for instance require up to 10 W per color or even more. This level of power sufficiency, maturity or even cost effectiveness is still beyond the existing RGB scanners. When it comes to beam quality, these machines have to operate with high quality beams for them to perform effectively.

In situations where optical modulators is not practical as a result of low-power miniature devices or for any other reason, the RGB sources are fitted with power-modulators for better signals. Using laser diodes in particular helps achieve modulation bandwidth of tens to hundreds of megahertz or even higher resolutions.

The construction of RGB lasers can be achieved in several manners with the most common ones involving the use of three different lasers with each producing one of the three colors. This method of visible beams however comes with several limitations in comparison to the other methods that employ the use of near infrared rays.

The use of infrared solid-state lasers involves application of a single laser that emits a beam of near infrared (invisible) nature. Such a beam then undergoes through several stages of nonlinear frequency conversion the end of which a three colored beam is produced. The other methods that have also been used to obtain these colors are the combination of parametric oscillators, the use of frequency doublers and the use of frequency mixers.

Technological advancement is however set to completely address the challenges in with an RGB laser. Just like other forms of lasers, they are set to be used in all other areas where there are need for lasers like in hospital machines, cutting technology and in entertainment industry among others.




About the Author:



0 comments:

Post a Comment